Comp	<u>cez C</u>	omps
	Prosury CEZ Prosury Comp's — Prosury Comp's —	 ₹ 12:29 40 CRA Plat Error
The Pro	surv cEZ Comps button cont Divide Curve Translate and Rotate Translate Elevations Polygon Area Segment (Curve) Are Pre-determined Slidi Pre-determined Hing Closed Traverse Com Connecting Traverse Distribute Plat Error Compute a Radius Po Fit Curve to Two Tan Divide Line 2D/3D the first time you use a Com ad.	rains 13 powerful routines: a ng Line Area Jed Area Jpass Rule Adjustment Compass Rule Adjustment (Compass Rule) Dint based on 3 points gents (Curb Returns)
Note: T onds to loa	 Closed Traverse Com Connecting Traverse Distribute Plat Error Compute a Radius Pc Fit Curve to Two Tan Divide Line 2D/3D the first time you use a Cond 	pass Rule Adjustment Compass Rule Adjustment (Compass Rule) pint based on 3 points gents (Curb Returns)

Comps

Page 11

sec-

Divide Curve The divide curve ways. It can even create Offset points (offset from the curve). Options in- clude: • Every 3 degrees • 1 degree • 1/2 degree • 1/3 degree • 1/4 degree • Split by • Other	routine lets you divid Prosurv CEZ C Divide Curve PC Point # Radius Point # Offset Curve Right 3 degrees	ie a curve se comp's 2 3 4 0 V	everal different
If you select Split by , then you can enter a number of divisions. The example shows 5 total arcs, which creates 6 points.	Prosury CEZ C Divide Curve PC Point # Radius Point # PT Point # Offset Curve Right Split by # of Arcs (2 arcs:	2 3 4 0 	€ 9:42
If you select Other , you can enter any De- gree amount in D.MMSS format. In this example, a point will be computed every 4°33'00".	Curve Right Other Every x Deg (d.m S	Imss) 4.i	3300

Page 12

Comps

Comps

In the example above, the points contained in SET #1 are to be translated and rotated. SET #1 contains points 1.5 (1 through 5) as previously defined, and happens to represent some horizontal geometry that was defined as tangent-curve-curve.

To use this routine, you define two points (or a point and a line) **to translate/rotate ONTO**. Then you define two points (or a point and a line) that represent your existing coordinate system.

In the example, there won't be any translation, since you're using the same point number "From" for each system, in this case, **Point #1.** If you entered a different "From" number for the Reference Line, such as 55, then Prosurv cEZ would "move" or translate your points based on the translation between 55 and 1.

Back to the example, the **existing bearing** from 1 to 2 is N 22°15′10″ E, which you **don't need to know**, because Prosurv cEZ will compute the bearing from 1 to 2 since you entered these numbers for the reference line.

Ultimately, in the example, we will be rotating our horizontal geometry from it's current position so that points 1 to 2 will be at N $10^{\circ}00'00''$ E.

Tap the Comp button to compute and store the points. In this case, only the points 1.5 will be changed.

27	Prosury cEZ Comp's 🛛 📢 10):29
Tra	nslate & Rotate ———	
Inc	lude #'s ;1	
M Fr	ove Onto Line rom #1	
Т	Prosurv cEZ	@
Re Fi To	Translation & Rotati completed.	on
0	Entered #'s only Com Entire File Done.	IP

If you need to translate without any rotation, you could enter **NE0.0000** for each **To #**. An example would be moving from a 1000, 1000 system to 50000,50000.

Page 14

Translate Elevations

This routine lets you translate elevations from one datum to another. To translate the elevations of points in your job:

- Enter the point number whose elevation is used as the "From" elevation 1.
 - Enter the new elevation for that point
- Enter the point numbers whose elevations will be changed, based 2. on the difference between 1 and 2. The point being used for #1 does not have to be in the list of points being changed.

This routine is setup so that it works the way you do. For example, say you've shot a Fire Hydrant as a Benchmark and initially it was assumed as 100.00' in elevation. When you shot the BM, it was stored as shot #82. Now, you've run a level circuit and find that it's elevation is actually 729.33. So for the first text box you'd enter 82, and in the second text box, you'd enter 729.33. It's that EZ!

In the third text box, you've entered the point list 1.154. So every point from #1 to #154 will have it's elevation increased by (729.33-100) =629.33'.

Comps

40 Polygon Area	
This routine simply com up to 200 points can be en list) by entering a sem-colo	nputes the Area within a boundary. A point list of ntered, or you can enter a SET (pre-defined point on and the SET #, such as ;5.
Note that if your Job units have been defined as metric, the area will be displayed in Hectares	Prosury cEZ Comp's ◀€ 10:23 Polygon Area
Include #'s '* If your Job units are JS Foot, then your area vill be displayed in Acres and Square feet. Prosurv cE2 Area computed Hectares = 40,72794	
and Square feet.	Prosurv CEZ Area computed Hectares = 40,72794
	Square meters = 407279.387
	▲
5 16	C C

Page 16

Comps

Prosurv cEZ Users Manual Curve (Segment) Area This routine computes *Prosury* CEZ Comp's ◀€ 10:28 the curve area within the curve segment. Curve Segment Area Enter the PC, PT, and Radius Point of the curve whose PC # 2 area you need. PT# 4 Comp RP# 3 Then press the Comp button to see the results. **o**k Prosurv cEZ If your Job units are metric, then Square me-Area computed i ters and Hectares will be Square Feet = 6085.951 displayed. Acreage = 0.140Comps Page 17

You may use this routine to cut up a parcel or to expand acreage. The routine will create two intersecting points and only requires you to enter four points. Each point created will be on the lines given (i.e. Line 1 and Line 2). The two points will be at the bearing that you've chosen.

The Bearing that you choose can be **any Bearing.** It is <u>not</u> required that this bearing be parallel to any other line. To select the bearing of the new line, you may either:

- Enter the Bearing directly.
- Enter two points representing the Bearing.

Example

You want to create a 10 acre piece of land inside of a known 40+ acre Lot whose south line is parallel with the south line of the Lot. Line 1 is represented by points 617-618 while Line 2 is represented by points 619-620. The needed acreage therefore lies to the left of points 617 and 619 (the 'From' points of each line).

This will tell Prosurv cEZ how to compute the 10 acres. If you gave Line 1 as 619-620 and Line 2 as 617-618, then the 10 acres would be created

Page 18

Page 20

set number representing the points of the polygon simply by pressing a

Prosurv cEZ Users Manual

Comps

semi-colon ; followed by the set number.

	🎥 Prosury cEZ Comp's 🛛 🛋 🕂 12:00 🐽
In this example, points 704.708 have been stored as SET #2.	PDA Hinged First Point is Hinge Point
and we'd like to create 8 acres.	Include #'s ;2
	Area to Create 8.00
	Comp
View the computed point and tap Save 1 to	
store it.	Prosurv cEZ Comp's 4(÷ 12:01 🐽
	Point 1
	N 5303.38084
	E 1340.23141 Z O
	FC Hinged acre
	Exit Save 1 Save 2 Save Both
Page 22	Comps

Prosurv cEZ Users Manual

Prosurv cEZ Users Manual

Page 24

Comps

Prosurv cEZ Users Manual

Comps

Point #	Northing	<u>Easting</u>	
800	6002.85	800.77	
801	5053.77	1029.55	
802	5218.65	2129.33	
803	4897.22	2899.98	
804	5053.77	1029.55	
805	5100.35	1492.87	
806	4795.04	1819.33	
807	5219.10	2128.77	
808	4897.52	2900.11	
820	5053.77	1029.55	
821	5100.21	1493.04	
822	4794.76	1819.65	
823	5218.65	2129.33	
The forward azimuth	🎊 Prosury cEZ Comp's	≼ € 12:41	
displayed and compared to the computed forward	Compass Rule Adi (Conne N Prosury CEZ	•rt)]

Page 28

907	N 89° 58' E	⁹⁰¹ 660.11 ^{, 902}	N 89° 00' E 9
900	1320.81'	N 89° 45' E	850.00'
			. 3
			9.00
			31

This routine allows you to adjust pre-computed plat coordinates to better fit what you've located in the field.

Points 900.904 are pre-computed coordi-	🎊 Prosury cEZ Comp's	🛛 📢 1:06 🛛 🐽
nates based on a Gen- eral Land Office Plat of 1917. A traverse was run during which monu- ments were found at points 900 and 904. These monuments were	Compass Rule Adj (Dist. P Monument #1 (Found) Monument #2 (Found) Enter the points of the plat below	lat Error) 907 908 computed
908 respectively. The coordinates of these points are shown below. When using this routine, the coordinate of the	Comp	
first monument <u>must</u> be computed traverse.	the same coordinate as the first	point of your pre-

Page 30

Prosurv cEZ Users Manual

Comps

The entered, com-			
nuted and adjusted so	ह Poi	nts: Pg #1 of 4	
ordinates are shown	<-	-> 🔘	PNEZF 🔵 PA
here.	luna		— 🔽 List Set
		Find	# 3 Go
	PC #f	ortneasteley	FLODE
	900	5000.0000	1000.0000
	901	5000.7684	2320.8098
	902	5018 4832	2900.9133
	904	3699 6841	3807 7643
	907	5000.0000	1000.0000
	908	3701.2200	3808.1200
	909	5001.2572	2320.9230
	910	5004.3818	2981.0833
	911	5019.5309	3831.0266
This routine will cor point given 3 points on must enter the points fro The resulting coordinate equal radius to all three curve.	Point npute a a curve. om left to e will ha e points o	radius You right. ve an on the 207 RP	201

Page 32

Comps

Comps

point. This routine is great for computing the following:

- Curb returns where a new road intersects an existing one
- Curb returns where two new roads will intersect •
- Determining the PC, PT, RP, and PI when designing a new . road in the field (Fit a Curve to Two Tangents)

The PC, PI, PT, and Radius Point will be computed. You will have to know 2 points representing the existing curb (as shot in the field) and 2 points on the future curb line which will meet the existing. Or, if you know the PI, you can enter the PI and one point from each line.

intersect

nately-i.e. a 'cross' is created if the points are connected. If, however, (as often happens) the points do not cross, simply create a point 500' up each line for example, and use these coordinates instead.

In the following example, point #304 was created at 500' from point #302 and 180 degrees from line 302-303 in order that the two lines would cross. The reason for this is that a total of four radius points could be computed from the two lines.

You will have to determine which is your PC and PT by inversing or plotting etc... The points are given the descriptors PC, PI, PT, and RP automatically.

Page 34

Points used in this example are shown here	🏂 Po	ints: Pg #1 of 5	
	<-	-> 🧕) PNEZF 🔵 PA
	Jump	Go Find	First Set Go Go
	Pt #	NorthEastEle	vFCode
	300	5000.0000	1000.0000
	301	5100.0000	1100.0000
	302	4800.0000	1023.5000
	303	4800.0000	1023.5000
	304	5349.7752	1039.9933
	308	5030.4124	1030.4124
	309	5018.5152	1030.0555
	310	5038.8288	1038.8288
	311	5017.6156	1060.0420

Prosurv cEZ Users Manual

Another great reason to use this routine is when designing a new roadway in the field. Refer to the diagram below for this example:

Shots 500-517 were taken at the centerline of an existing two-track dirt road. It is desired that the incoming tangent (Backtangent) should be between points 500 and 505, and that the outgoing tangent (Foretangent) be between points 512 and 517. To create the true curve (with the PC and PT

Comps

Prosurv cEZ Users Manual

at 90° to the tangents), follow these simple steps:

- Compute a bogus radius point #997 to determine what radius to use. To do this, use the Compute Radius Point routine (Ctrl-*) and enter 506 as the left point, 508 as the center point, and 511 as the right point. Store this point as some bogus # i.e. 997.
- Inverse 997 to points 506 through 511 just to check that the radius to all the points is about the same amount (i.e. 270'). This is the radius you'll use to create the curve.
- Be sure to create bogus points (i.e. 998 and 999) so that the two tangent lines actually intersect (a requirement of this routine). To do this, you could use the Field Note reduction routine (Ctrl-F). I.E. BS = 500, Gun = 505, angle = 180°, distance = 1000' to create #998.

Once you've got 998 and 999, press Shift-Ctrl-Q (this routine) and enter the data shown here.

Page 36

Divide a Line (2D or 3D)

This routine will divide a line into *n* **equal parts.** All you need to supply are two points (representing the beginning and end of the line), the number of equal parts, and the starting point number to save the points. **This routine can also compute the points "3-D".** In other words, the slope of the line can be computed and the appropriate computed elevations will be stored with each point. If you need the elevations computed, simply check the "Compute Elevations" check box.

~	*	0		~	500'	0		0	-	2
35	100'	101	100'	102	100'	103	100'	104	100'	40

The example above shows a distance of 500' between points 35 and 40. It has 5 divisions which will create 4 points with 100' intervals automatically. The first point will be saved as point #101. The default number of divisions is 2, which would create one point. There will always be one less point created than there are divisions.

1	🛛 Pro	osurv	cEZ (Comp's	5	- € 1	:41	0
1	Divid	le Lin	e —					
	2	divis	ions r	nake	one p	point.		
	Num	ber o	of divi	sions	5			
	Star	ting l	point	#	35	5		
	Endi	ng Po	int #		40			
	Con	pute	eleva	ations			\checkmark	
			[Com				
				com	۲			

Comps